Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361006

RESUMO

The execution step in apoptosis is the permeabilization of the outer mitochondrial membrane, controlled by Bcl-2 family proteins. The physical interactions between the different proteins in this family and their relative abundance literally determine the fate of the cells. These interactions, however, are difficult to quantify, as they occur in a lipid membrane and involve proteins with multiple conformations and stoichiometries which can exist both in soluble and membrane. Here we focus on the interaction between two core Bcl-2 family members, the executor pore-forming protein Bax and the truncated form of the activator protein Bid (tBid), which we imaged at the single particle level in a mitochondria-like planar supported lipid bilayer. We inferred the conformation of the proteins from their mobility, and detected their transient interactions using a novel single particle cross-correlation analysis. We show that both tBid and Bax have at least two different conformations at the membrane, and that their affinity for one another increases by one order of magnitude (with a 2D-KD decreasing from ≃1.6µm-2 to ≃0.1µm-2) when they pass from their loosely membrane-associated to their transmembrane form. We conclude by proposing an updated molecular model for the activation of Bax by tBid.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Bicamadas Lipídicas/química , Proteína X Associada a bcl-2/química , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Proteína X Associada a bcl-2/metabolismo
2.
Biophys J ; 106(10): 2085-95, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24853737

RESUMO

Bid is a proapopotic activator protein of the Bcl-2 family that plays a pivotal role in controlling mitochondrial outer membrane permeabilization during apoptosis. Here, we characterized the interaction of fluorescently labeled truncated Bid (tBid) with a mitochondria-like supported lipid bilayer at the single-molecule level. The proteins observed at the membrane exhibited a very wide range of mobility. Confocal images of the membrane displayed both diffraction-limited Gaussian spots and horizontal streaks, corresponding to immobile and mobile tBid species, respectively. We observed 1), fast-diffusing proteins corresponding to a loosely, probably electrostatically bound state; 2), slowly diffusing proteins, likely corresponding to a superficially inserted state; and 3), fully immobilized proteins, suggesting a fully inserted state. The stoichiometry of these proteins was determined by normalizing their fluorescence intensity by the brightness of a tBid monomer, measured separately using fluorescence fluctuation techniques. Strikingly, the immobile species were found to be mainly tetramers and higher, whereas the mobile species had on average a significantly lower stoichiometry. Taken together, these results show that as soluble Bid progresses toward a membrane-inserted state, it undergoes an oligomerization process similar to that observed for Bax.


Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Animais , Bicamadas Lipídicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Movimento , Estrutura Quaternária de Proteína
3.
ACS Nano ; 6(12): 10571-80, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23136964

RESUMO

The influence of surface geometry on adsorbed proteins offers new possibilities for controlling quaternary structure by manipulating protein-protein interactions at a surface, with applications that are relevant to protein aggregation, fibrillation, ligand binding, and surface catalysis. To understand the effect of surface curvature on the structure of the surface-bound protein ß-lactoglobulin (ß-LG), we have used a combination of polystyrene (PS) nanoparticles (NPs) and ultrathin PS films to fabricate chemically pure, hydrophobic surfaces that have nanoscale curvature and are stable in aqueous buffer. We have used single molecule force spectroscopy to measure the detachment contour lengths L(c) for ß-LG adsorbed on the highly curved PS surfaces, and we compare these values in situ to those measured for ß-LG adsorbed on flat PS surfaces on the same samples. The L(c) distributions measured on all flat PS surfaces show a large monomer peak near 60 nm and a smaller dimer peak at 120 nm. For 190 and 100 nm diameter NPs, which are effectively flat on the scale of the ß-LG molecules, there is no measurable difference between the L(c) distributions obtained for the flat and curved surfaces. However, for 60 nm diameter NPs the dimer peak is smaller, and for 25 nm diameter NPs the dimer peak is absent, indicating that the number of surface-bound dimers is significantly reduced by an increase in the curvature of the underlying surface. These results indicate that surface curvature provides a new method of manipulating protein-protein interactions and controlling the quaternary structure of adsorbed proteins.


Assuntos
Lactoglobulinas/química , Nanopartículas/química , Multimerização Proteica , Adsorção , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/metabolismo , Microscopia de Força Atômica , Poliestirenos/química , Estrutura Quaternária de Proteína , Propriedades de Superfície
4.
J Biol Chem ; 286(32): 28265-75, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21676875

RESUMO

Many plant aspartic proteases contain an additional sequence of ~100 amino acids termed the plant-specific insert, which is involved in host defense and vacuolar targeting. Similar to all saposin-like proteins, the plant-specific insert functions via protein-membrane interactions; however, the structural basis for such interactions has not been studied, and the nature of plant-specific insert-mediated membrane disruption has not been characterized. In the present study, the crystal structure of the saposin-like domain of potato aspartic protease was resolved at a resolution of 1.9 Å, revealing an open V-shaped configuration similar to the open structure of human saposin C. Notably, vesicle disruption activity followed Michaelis-Menten-like kinetics, a finding not previously reported for saposin-like proteins including plant-specific inserts. Circular dichroism data suggested that secondary structure was pH-dependent in a fashion similar to influenza A hemagglutinin fusion peptide. Membrane effects characterized by atomic force microscopy and light scattering indicated bilayer solubilization as well as fusogenic activity. Taken together, the present study is the first report to elucidate the membrane interaction mechanism of plant saposin-like domains whereby pH-dependent membrane interactions resulted in bilayer fusogenic activity that probably arose from a viral type pH-dependent helix-kink-helix motif at the plant-specific insert N terminus.


Assuntos
Ácido Aspártico Proteases/química , Proteínas de Plantas/química , Solanum tuberosum/enzimologia , Sequências Hélice-Volta-Hélice , Humanos , Estrutura Terciária de Proteína , Saposinas/química , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
5.
Biophys J ; 98(3): 386-95, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20141751

RESUMO

We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations.


Assuntos
Gramicidina/química , Simulação de Dinâmica Molecular , Movimento (Física) , Análise de Componente Principal , Cátions/química , Bicamadas Lipídicas/química , Modelos Estatísticos , Distribuição Normal , Oxigênio/química , Periodicidade , Fosfolipídeos/química , Conformação Proteica , Fatores de Tempo , Vibração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...